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CYLINDRICAL MEASURES AND CYLINDRICAL PROCESSES
: . ON LOCALLY CONVEX SPACES A
BY

ZDZISLAW SUCHANECKI (Wroctaw)

- Abstract. The first part of the paper ‘contains generalizations
of results of Gil de Lamadrid [5] and Vakhania and Tarieladze
[10] concerning properties of cylindrical processes via the Pettis °
‘integral. The second part deals with characterization of cylindrical
measures which are scalarly concentrated' on compacta.

1. Introductlon In thls paper we con51der relations between some properties

of cylindrical measures and propertles of cylindrical processes on locally<

convex spaces.

" Section 2 is devoted to necessary notatlon and basic facts. In Sectlon 3
we consider the Pettis integral of cylindrical processes which are elements
of EQ,L'(Q, o, P). The results of Section 3 are used in Section 4. In
particular, the results obtained contain those of Gil de Lamadrid [5] and
Vakhania and Tarieladze [10]. In Section 4 we show that a gaussian
cylindrical measure 4 on a complete locally convex space E is scalarly
concentrated on compact sets if and only if its cylindrical process belongs
to E®Q,L? (Theorem 4.1). Moreover, in this situation g has the barycenter
in E and the reproducing kernel Hilbert space of u is a subspace of E

with the compact unit ball (this result for gauss1an Radon measures is due -

to Dudley et al. [4]).

2. Notatlon and preliminaries. In this paper, by a locally convex space
(Lc.s) we mean a Hausdorff locally convex space, not equal to.{0}, over
the field R of real scalars. If E is an lcs., then E’ denotes its topological
dual, and {x, x> stands for the value of a functional x'€E’ at xeE. For
subsets A c E and B c E', the symbols A° and B° denote the polars with
respect to the duality (E, E'> and {E’ E>, respectively. Let E/, and E' denote

the space E' under the topologies o(E’, E) and t(E', E) (weak and ‘Mackey),

respectively. If' & is the family of all equicontinuous subsets bf_ E and F
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is a Banach space, then the space L(E F) of all (z(E', E), ||-|£) continuous
linear mappings of E’ into F with the topology of umform convergence
on the sets S€ & will be denoted by L, (E,, F). ’

Let E be an lcs, F a Banach space and EQF the tehsor product
of E and F. We deﬁne

gy(2) = sup sup Kz, x ®y 5 for zeE@F,

x'el’ y'el

‘where U runs over the base of convex and circled neighborhoods of 0in E
and B is the unit ball"in F. The topology generated by the family of

- semihorms &y (-) is called the s—topology The completion of EQF with respect

to the ¢- topology is denoted by - E®,F. In particular, if E is a Banach
space, then- E®, F is also a Banach space with the norm denoted by |-|,.

ProposITION 2.1 (cf. [9], 9.1, p. 167, and [6], p. 166). Let E be a complete
lcs. and F a Banach space. The space E®Q,F can be identified with the
closure of EQF in L,(E., F). Moreover, if F has the approximation property,
then EQ,F is identical with the space. of all continuous linear mappings in
L(E', F) transforming equzcontmuous subsets of E into relatwely compact
sets in F. .

COROLLARY 2.1. Let E and F be Banach: spdces and suppose that F has
the approximation property. Then E®,F is norm isomorphic to the space of
all (z(E', E), ||-|lg) continuous and’ compact lmear nmppmgs of E’ mto F with
operator norm topology. _

Let (Q, o/, P) be a probability space and let I, 0 < p < oo, denote
the space I*(Q, o/, P). If E is an lcs., then the linear mapping T: E' - IF is
called the-cylindrical process. In particular, if f: @ — E is a weakly measurable
.functlon such that (f,x)el’ for each x eE’ then by T, we denote the
mapping T, x" = {f, x). . _ ‘

We say that a cyl1ndr1cal process T: E’ —>LP 1<p<g ) is Pettis integrable
if for each Ae sl there exists x 4€E such that :

(x4, %"y = [ Tx'dP for each x eE'
, L 4 _ .
and we write ‘ .
IR _deP=‘xA.

If E is a Banach space and T E'»I? a Pettls integrable cylmdnca]
process, then we define the p-th Pettis norm of T as follows :

T, = sup ( IITxI"dP)””
‘ Ixi<t _

Now let f be a f_tlnction_ op £ with values in an lcs. E. We say that
f is separably valued if there exists a set Ne.w/, P(N) = 0, and there exists

-a separable subspace E; of E such that f(Q\N) ¢ E;. By #?(E) (1 < p € o)
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we shall denote the space of all separably-valued and Pettis integrable
functions f such that {f,x")eL” for each x'eE’. We endow #’(E) with
the p-th Pettis norm ||-]|, induced by the corresponding cylindrical processes.

3. The Pettis integral of cylindrical processes. In this section we- prove
that if £ is a complete lcs., then every TeE®, L!'(Q, o, P) is Pettis
integrable.. Moreover, we give characterization of the space #!(E)” — the
completion of #!(E) in topology generated by the family of seminorms

WAy = SUPIKf x)ldP

x'eU*®

- where U runs over the base of convex and cucled;_rmghb@rhoods of 0 in E.

A. The case of a Banach space. Suppose that E is a Banach space.
By Corollary 2.1, elements of E ®_€L1 are identified with compact linear
operators in L (E', I}) which are (z(E’, E), | - ) continuous.

ProposITION 3.1. If E is a Banach Space, then every TeE ®,,L1 is Pett:s
integrable and ||T||, = || T|..

Proof. It is sufficient to show that for every TeE®,L there exists
xo€E such that '

o

(xo, x') = j 73c’dP for each x-’eE'.‘

Indeed if TeE®, L, then for each Aes/ the operator T1,, (Tl DX
= Tx'1,, belongs to ER, L. '

Now we. define a contlnuous'lmear mappmg of EQ,L! into E.' For
TeEQL, '

we se,t’:

Then we have _ . » o
_fo P = <j TdP, x) . for each x’eE’,'
and

”deP" sup j|Tx|dP = ||T| = IlTllg-

Therefore, j(-)d{’ extends to a continuous linear mapping on E®, L
into E. For TeE®,L' there exists a sequence {T,} « EQL' such that

.II”.l:p—Tlls—»'O.‘Then we set

[ TdP = lim | T,dP.
2 L)
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It is easy to verify that the integral deﬁned in such a way commdes
w1th the Pettis integral and that - :

|||T||11 = sup f|Tw IdP = IITIFE

fixll<1

COROLLARY 3.1. Let E and E, be Banach spaces, S: E— E, a continuous
linear operator and S* its adjoint. If TeE®£L1 then TOS"‘EE1 ®.I* and

S[TdP = [ ToS*dP.

Proof. Using Corollary 2.1 it is easy to. verify that ToS"‘EE1 ®£L1
The second part of Corollary 3.1 is obvious.

The following proposition was firstly obtained by Gil de Lamadrid ([5],
Theorem .6.1) under the assumption that Q is a locally compact Hausdorﬁ
space. However, our proof-is simpler than that in [5]. -

PROPOSITION 3.2. The space (£ (EY, |- Il,) zs norm isomorphic to E ®,L1

Proof. If fe %' (E), then there exists a sequence of simple functions
{f.} such that || f,—f]l; = O (cf. [7], Theorem 4.3). Hence SI}"EE(@L1 and

Ny, =T Iy = Ty, — Ty, [l,=0 as n,m— co.

Therefore, there-exists Te E ® L! such that | 17, —TFI -0 and ev1dent]y,
= T. Hence ¥'(E) c E®Q,L'. Since for every’ Te EQL' there exists
fegl(E) such that T = T,, we have &' (E) = E®, L.
' B. The case of a locally convex space. g o
THEOREM 3.1. If E is a complete lcs then ‘each TeE®, L' is Pettis
integrable. - : '

Proof. To prove this theorem we need the following notation. Let
{U,}sca be a base of convex circled neighborhoods of 0 in E. The set
A is directed under inclusion, ie. « < f if Uy = U,. Denote by E, the

* completion of the normed space (E/p, * (0), p, (). where px () is the Minkowski

functional of U,. Let g,: E~E, and g,;: E;—E, (0 < B) be quotient
(canonical) maps and let h, and hﬁu be the.adjoints of g, and g,,,
respectively. Since E is- complete, it is isomorphic to the projective limit
11m 9up Eg of the family of Banach spaces E; ([9], 5.4, p. 53).

Suppose T<5E®EL1 then TeL(E' LY), and since each h, is Mackey
continuous, Toh, is (t(E,, E,), ||| Ll) continuous for each a€A. By Propo-

' sition 2.1, there exists a net' {T;} < E®QL' which converges in L, (E;, LY

to T. Moreover, since

|[Toh —Toh,| = sup ]I(Toh)x (Toh,,)xll , = sup ||Tx ch’lj

x'elUg x'elUg

Ll

‘Toh, is a limit in operator norm topology of finite-dimensional operators,

and hence Toh,eE, ®8L1. Therefore, by Proposition 3.1, for every acA
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there exists x,€E, such that

X, =T oh dP.
: 2

Using Corollary 3.1 we obtain _ o
Gus (%) = | TohyohydP = | Toh,dP = x, . for cach a < p.

Thus X = (x )aeAellm 9ap Ep, and hence XeE (here hm gza E,, and E are

1dent1ﬁed) Consequently, we may set -

deP-—x

It can be proved in a similar way as in Proposmon 3.1, that T is
Pettis mtegrable '

Now we introduce some auxiliary notation Let /- Q> E be a weakly
measurable function such' that {f, x'>eL' for:each x'eE’ and let U bé
a convex circled nelghborhood of 0 in E. We set

vy, U(A) = sup _[I(f x>|dP for cach AEJaf
xelU® 4

The following: proposmon extends the result of Vakhama and Tarleladze
([10] Theorem 4): : e

PROPOSITION 3.3, Let E be a complete lecs. and let f: Q—»E be a weakly
measurable and separably-valued function. If for each neighborhood U of 0
in E the set function v,y is absolutely continuous with respect to P, then
f is Pettis integrable.

Proof. We recall that a set function v on A is absolutely continuous
with respect to P if for each ¢ > 0 there is & > 0 such that P4) <o
implies v(A4) < &.

Using the same notation as in the proof of Theorem 31 we observe‘
that g,of is weakly measurable for each aeA and separably valued.
Moreover, for -each £ > 0 there is 6 > 0 such.that P(B) < 6 (Be.</) implies

sup_ 5I<910f XD|dP = Sup II(f x|dP = v, y(B) <.e.

~lxtlE €1

Thus by Theorem 5. 3 in [7] 9.0 f is Pettrs mtegrable Puttmg
' X, = _[gaofdP

we show as in Theorem 3.1 that (x,). Aehrn G E{,, Wthh proves Proposr-
tion 3.3. ‘ :

.COROLLARY .3.2. Let E be a complete lcs and let f: Q—>E be a weakly
measurable and separably-valued function. If, for some p> 1, {f,x )EL” for
each x'e E', then f is Pettis integrable.
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Proof. From the Holder inequality it follows that v, is absolutely
continuous with respect to P.

THEOREM 3.2. If E is an lc. Fréchet space then %' (E) is isomorphic
to E@SLl _

The proof of this theorem is analogous to that of Proposition 3.2. We
need only a-steép functions approximation of Pettis integrable functions,
which can be obtained. in a different way. The following lemma is an

‘extension of Lemma 4.1 in [8] on the case of the lLc. Fréchet space.

LEMMA 3.1. Let-E be an lLc. Fréchet space and let fe ' (E). Then there

exists a sequence of finite o-algebras o | = o, = ... = o such that E(f Leﬂ’,,) —f

as. in 31 (E), where E(f|sf,) denotes the weak conditional expectatlon

Proof. Notice first' that if % is a finite sub-o- algebra of o, then it
is generated by atoms B, ..., By and

E(flﬁ) Z [P(B;)] 1jde1,,,
where [fdP means the Pettis 1ntegral and we take [P(A4)]1 ' =0 if
P(4,) = 0.

It can be assumed that E is separable'. Let U, o U, o ... be a base
of neighborhoods of 0 in E and let |-||; € |-|; < ... be the corresponding

* Minkowski functionals. From [8], Lemma 4.1, it follows that for each

seminormed space (E, | -|,) there exists a .sequence of finite. o-algebras

Al .o

such that
P{If~E(fl#9l, <27 > 1-2"" for each neN.
‘ Since |-||; < |-l £..., we may assume that ¥ ! c &% We set
s, = /. Then ' ' o T S

: ',}.P{Ilf—E(fﬂld..)Ilk <27 > P{llf—E'(fI&?”)lln-< 27 > 127

for each fixed 'k and each n > k Therefore, the sequence {E(f |.g¢,,)}

converges to f a.s. in each seminorm ||-[,, and hence it converges a.s. in E.
‘It remains to show that E(f|sf,) converges to f in ZY(E). If V is
a neighborhood of 0 in E, then there is- U, such that U, < V, and
hence |-l < [I-[lly,- Using Proposition 3.3 and the fact that Afos ) s
a martingale, it is easy.to show that || f,—f|lv, = 0 as n — .
CoOROLLARY 3.3, Let E be an l.c. Fréchet space and let f: Q> E be
a weakly measurable and separably-valued function. If f is Pettis* integrable,

then there exists a sequence {f.} of simple functions whlch converges to f as.
in ,Sfl (E). :
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4. Applications to cylindrical measures. Let % (E) denote the algebra of
cylindrical sets on an lcs. E, and let u be a- cylindrical measure on .
(E,%(E)). For each neN and xi,...,x,€E we denote by /,t,,l ,,,,, ., the
probability measure on (R, #,,) such that ' :

toy... s, (B) = pi{xeE: (s Xi31 s (%, ,5)€ B}, where BE,

A cylindrical measure 'u is said to be gaussian if, for eéch"neN and
X1, ox,eE, ﬂx% .x, 18 the gaussian probability on R".
Let T E' - I’ (Q, m‘ -P)-be-a cylindrieal process. We set

@.1) (O) = P{T,, s Tx')e B,

where Ce% (E), C = {xeE: (x, X1),..., <X, %,))€B}, Be# .-Conversely,
if u is a cylindrical measure on E, then there exist a probablllty 'space
(Q, o/, P) and a cylindrical process T satisfying (4.1) (cf. [1], p. 41).

A cylindrical process T is said to be gaussian if, for each neN, and
Xys...n X,€E', (Tx}, ..., Tx,) is a gaussian random vector. By (4.1) there is -
a one-to-one correspondence between gaussian cyllndrlcal ‘measures and
gaussian cylindrical processes.

Let u be a cylindrical measure, T, its cylindrical process and let . !
f: E > R be a tame function, ie. f(x) = g({x, x1), ..., {x, x,>) for some Borel ‘
measurable function g: R*— R and xl,. s Xp eE’ If ,

-

RJ' ]g(tls cree n)l I'lx’l, (dt) < ®© ((; = (t15,"-s t','))’ -

then we write . _ ' . ]

[reux) = [ gty ... ) by, 5, ().
E Ly -

By (4.1) we obtain : .
42) { FEp(dx) = 5g(T Xy ooy T,x)dP.

- We say that u has a weak p-th order 1f _
S LR OPRE@) < .

By (4.2), there exists a one-to-one correspondence between cylindrical
measures having the weak p-th order and cylindrical processes on E' into. I?.

Now let © be a family of subsets of E and pu a cylindrical measure '
on E. We say that u is scalarly concentrated on . if for each & > 0 there
is Ae & such that '

'(px,)* (x'(4) > 1-¢ for eac.h. x eE

"~ {* denotes the inner measure).
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THEOREM 4.1. Let E be a complete lLcs. and let S be the family of

all compact circled subsets of E. Let u be a gaussian cylindrical measure
’ on E and T = T, its gaussian cylindrical process. Then the followmg assertions
are equivalent: » : '

(a) u is scalarly concentrated on 6

(b) TeE®,I2. _
. Proof. (@)=(b). If p is scalarly concentrated on &, then TeL(Es, [¥)
(cf [1], p. 21), where E% denotes E’ with the topology of uniform convergence
on sets SeS. Since. .T(E)) 1s the space of gaussian random ‘variables, then
the topologies induced on T (E) by I? and by I coincide. Therefore,
TeL(Es, I?), and hence TeL(E,, I?). -

It remains to show that if A is an_equicontinuous subset of E', then

T (A)is relatlve]y compact in I? (Proposition 2. 1). Let A be an equlcontmuous
subset of E' and let A denote the closure of 4 in o(E, E) By [9], 4.3,
p. 84, 4 is ¢ (E', E) compact. Now, let {y,} be a net in T(A), Vo = T,
where x;e 4. Thus there exists 4 subnet {x;} of {x;}, which converges in-
. E, to some xj, € A. Therefore x; converges to X umformly on each. Se&
(cf [9], 45, p. 85), and hence yg = T(xp) converges in T2

(b)=>(a). f TeE®,L? then TeL(E., L) and, for each eqmcontmuous

subset A of E', T(A) is relatively compact in [7. Let B be the unit ball
in I?. Similarly as in the: case where E is a Banach space it can be
. shown that T*(B°) is relatlvely compact in E (cf. [9], 94, p. 111). Setting
K = T*( °) we obtain T(K°) < B. Indeed, let ye T(K°), y = Tx', where
x'€e K°. Then

Iyl 2 = sup (T, y)l = Sup IKx', T*yH < 1

Iyl<t Tyl <1
because T*y'e K and x'e K°. Therefore Te L(Ee, I?), and hence Te L(E’s, I°).
-By [1], p. 21, u is scalarly concentrated on S.

Remark. The assumption that u is gaussian cannot be omitted. We
remark that even if y is a Radon measure on a Banach space E having
the weak second order, then in general T¢E®,L2. Note also that the
implication (b)=:>(a) is true for any cylindrical measure having the weak
second order.

~Let E be an lcs. and p’a cylindrical measure on E. I pu has the

weak second order, then there ex1st n, EE’* and a hnear mappmg
R E’—»E’* such that - :

<m,,,x> = I <x, x>u(dX)

(R, X y>—I<x x' %, ¥y p(dx) — <m#,x><m,,,y>
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(E'* denotes the algebraic dual of E'). We say that m, is the mean (or
barycenter) of yu, and R, is called the covariance operator of p. :

~ On the subspace R L(E) of E* we define the inner product For
hy,h,eR,(E), hy = R, X}, h, = R,x;, we set

(hy, 2)’ = (R, X1, X3).

" Let H denote the completion of R,(E) in the norm |-[, = (, '
If u is_a gaussian cylindrical measure, then H, is called the reproducmg
kernel Hilbert space of u (many results concerning H, of cylmdncal measures
can be found in [3]). ‘

The forthcoming theorem extends results of Dudley et al. ([4], Theorem 4)
and Borell ([2}, Theorem 2.1 and Corollary 2.3) on the case of cylindrical
gaussian measures on a complete lLcs. In the above-mentioned papers it
was assumed that u is a gauss1an Radon measure.

THEOREM 4.2. Let E be a complete lc.s. and & the famzly of all compact
circled subsets of E. Suppose that u is'a cylindrical gaussian measure on E,
scalarly concentrated on . Let m, denote the barycenter of u and R, its
covariance operator. Theu:

_(a) m,eE;

(b) R E' ¥>E and R (U°) is a compact subset of E for each nelghborhood
U of 0 in E;

(c) the canomcal m]ectton 6: 'H, —E is contlnuous and 9(?5) = Uo, where
yy denotes the canonical gaussian measure on H, and o () = u(- +m)

(d) {heH,: |h|, < 1} is a compact subset of E.

‘Proof. Let T= T be the cylindrical gaussmn process of u

(a) By Theorem 4.1, Te EQ,L? so TeE ®8L1 Therefore by Theorem 3.1 .

and (4. 2) j
TdP € E

(b) Note that 1f TeE®£L2 and f el?, then the linear mapping. f T:
E > L (f-T)x = f-Tx', belongs to E@)‘,L1 Indeed, let eU( ) be a seminorm
on E ®. L, ie.

| sU(S) = sup | Sx'|| .t for cach SeE@BLl,

. x'eU®
\

where U is a circled convex nelghborhood of 0 in E. Smce TEE ®, 12,
there exists a net {T} = E@L2 such that

sup | Tox'— T2 0.
xell

Therefore f-T,e EQL' and
fo(f T—f-T) < sup |f |2l Tx' =Tl 2 > 0.
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Now let x,eE be fixed We consider the operator Sz cE -1,
Sy = Txo- T. Since 8§, EE®£L1 there exists xoeE such that '

(g, ¥ = [SyydP = [ Tx'-TydP for each y'eE'.
. re) O .

Therefore R, xo = xo—<m,, x> m,cE. : -
The second part of (b) fellows from the fact that R, T*oT.and from
Proposition 2.1.

(c) Let U be a convex c1rcled nelghborhood of O in °E; pU() 1ts gauge
and let E, be thé completion of the normed space (E/pu (0) pU()) Lets
By E—»E‘U denote the quotient map. Since E is complete, it suffices to
show, by [9], 54, p. 53, that 00 is contmuous for each U.

" Suppose xeR,(E), x = R,x'. We have

po(@u00)x) = pu(Pu(0(R, ) = sup [KR,x', ¥
= sup KT, /)] < ||Tx 2D,

where £ () denotes the seminorm on E®,3L2 Therefore, the mapping 6
is continuous and a 51mp1e calculation proves the second part of (c).

(d) Denote by # the closure of To(E) in I?, ‘where K =T-m
Observe that H, = Tg* (o). Indeed, the map Tg* is the norm 1somorph1sm .
of I (E) onto R (E’) and thus extends to the norm 1somorph1sm of #
onto H,.

So, zf B is the unit ball in Jf then B, = T* (B) is also a closed unit
~ball in H,. As was pointed out in the proof of Theorem 4.1, B, = T5*(B)
-is relatlvely compact in E. Thus it suffices to show that B, is closed in E.

Let .{x,} be a net in B which converges in E to some xeE. Since
B is o(H,, H,) compact, there exists a subnet {x;} such that x; converges
- to some zeB, in o(H,, H,). By (c) the canonical injection 0: H,~ E is
continuous, so it is weakly continuous. Therefore x; converges to z in
¢ (E, E’), and hence x ='z. This completes the proof of Theorem 4.2.

Now we give some modlﬁcatlon of Theorem 4.2 for non- -gaussian
cylindrical measures. SR :

THEOREM 4.3, Let E be a complete Lcs. and ,u a cylindrical measure
on E such that T, eE®sL2 Then:
(@) m,eE;
(b) R E'-E and R, (U°) is relatwely ‘compact in E for each convex
nelghborhood UofOin E
(c) the canonical injection 0: H, — E is continuous;
(d) {heH,: ]ih]lﬂ <1} is compact in E. '

The proof of this theorem is similar to that of Theorem 4.2.
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Remark. ‘Note that the conditions of Theorem 4.3 are satisfied if u
is a Radon measure on E having the strong second order. This extends
the results of Vakhania and Tarieladze (cf. [10], Theorem 7 and Proposition 6).

Added in proof. The proof of Theorem 3.1 follows easily from Corollary 1
of the author’s paper Remarks on Pettis integrability of cylindrical processes,
Lecture Notes in Math. 828 (1980), p. 269-273.
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